Machine learning techniques in intensive care monitoring

نویسندگان

  • Wiebke Sieben
  • Karen Schettlinger
  • Silvia Kuhls
  • Michael Imhoff
چکیده

Monitoring systems in intensive care units have a high false alarm rate. Machine learning techniques can be applied to improve existing alarm systems. We present two approaches, a filtering approach and a classification approach, and demonstrate their potential in reducing false alarms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Machine Learning Applied to Medical Time Series

The field of medicine has witnessed numerous improvements in recent decades, yet many of the biological processes underlying the medical problems faced today remain a mystery. Recent advances in machine learning enable the extraction of features that would be nearly impossible for experts to find in the massive medical datasets. The techniques not only offer improved continuous patient monitori...

متن کامل

Using Bayesian Networks and Rule-Based Trending to Predict Patient Status in the Intensive Care Unit

Multivariate Bayesian models trained with machine learning, in conjunction with rule-based time-series statistical techniques, are explored for the purpose of improving patient monitoring. Three vital sign data streams and known outcomes for 36 intensive care unit (ICU) patients were captured retrospectively and used to train a set of Bayesian net models and to construct time-series models. Mod...

متن کامل

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Classifying Agitation in Sedated ICU Patients

Agitation is a serious problem in sedated intensive care unit (ICU) patients. In this work, standard machine learning techniques working on wearable accelerometer data have been used to classifying agitation levels achieving very good classification performances.

متن کامل

Real-Time Analysis of Physiological Data and Development of Alarm Algorithms for Patient Monitoring in the Intensive Care Unit

The lack of effective data integration and knowledge representation in patient monitoring limits its utility to clinicians. Intelligent alarm algorithms that use artificial intelligence techniques have the potential to reduce false alarm rates and to improve data integration and knowledge representation. Crucial to the development of such algorithms is a well-annotated data set. In previous stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008